Code No.: 13651 S N/O

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (I.T.) III-Semester Supplementary Examinations, August-2023 Digital Electronics and Logic Design

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

	$Fart-A (10 \times 2 - 20 \text{ Warks})$	- 55			
Q. No.	Stem of the question	M	L	CO	PO
1.	Draw the logic circuit symbol of a three input AND gate and give its truth table.	2	1	1	1
2.	If $52/4 = 12$ find the base of the number system.	2	1	1	1
3.	Draw the logic circuit diagram of a 2x1 Multiplexer.	2	1	2	1
4.	Draw the logic circuit diagram of a half adder circuit.	2	1	2	1
5.	Give the excitation table of a SR flip flop.	2	1	3	1
6.	What is logic race condition and how it can be avoided	2	1	3	1
7.	What is state reduction? What is achieved by doing state reduction?	2	1	4	1
8.	What is state equivalence principle?	2	1	4	1
9.	Define clock skew.	2	2	5	1
10.	What are ASM charts?	2	2	5	1
	Part-B $(5 \times 8 = 40 \text{ Marks})$				
11. a)	Draw K map ans simplify the following $F(A,B,C,D) = \Sigma(0,2,4,6,8,10,12,14,15)$	4	3	1	1
b)	Simplify the following Boolean function and implement them with NAND gates	4	3	1	1
	AB' + ABD + ABD' + A'C'D' + A'BC'				
12. a)	Implement a full subtractor circuit with two half subtractors and an OR gate.	4	3	2	1
b)	Implement a Full adder circuit using VHDL.	4	4	5	1,3
13. a)	With a neat circuit digarm explain the operation of a Master Slave J K flip flop.	4	3	3	1
b)	What is Characteristic equation of a flip flop? Derive the characteristic equation of J K flipflop	4	3.	3	1,2

			- 5		
14. a)	Illustrate the procedure of state reduction by taking a suitable example.	4	4	4	2
b)	Distinguish between Mealy and Moore sequential circuits.	4	2	4	. 1
15. a)	List and explain the different types of hazards in logic circuits.	4	2	3	1
b)	Explain about the different elements of an ASM chart.	4	2	4	1
16. a)	Simplify the following in POS form:	4	2	1	1
	$F(w,x,y,z) = \Sigma(2,3,4,5,6,7,11,14,15)$		2	1	
b)	Implement the following function s using a PLA	4	3	2	3
	$F1(A,B,C) = \Sigma m(0,1,2,4)$	•	5	2	3
	$F2(A,B,C) = \Sigma m(0,5,6,7)$				-
17.	Answer any two of the following:				
a)	Design a synchronous modulo -6 counter using T flipflops	4	4	3	3
b)	Design a two bit ripple down counter using negative edge triggered J K flip flops.	4	4	4	3
c)	Implement a D flip flop in VHDL	4	4	5	3

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

		- o. riogianimic
i)	Blooms Taxonomy Level - 1	20%
ii)	Blooms Taxonomy Level - 2	
iii)	Blooms Taxonomy Level – 3 & 4	25%
		22%
